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Abstract

We consider a linearly elastic composite medium which consists of an homogeneous matrix containing a crack
and a homogeneous and statistically uniform random set of ellipsoidal inclusions; the elastic properties of the matrix
and the inclusions are the same, but the stress-free strains ¯uctuate. We obtain the estimation of both the statistical
average and the conditional average of stress intensity factors. The relations for the second statistical moments of

stresses in the vicinity of the crack tip, averaged over the ensemble realization, are proposed as well. A method for
construction of the e�ective strength surface of matrix composites, according to the properties of their components
is developed. The expression for e�ective energy release rate is also derived. The fracture probabilities of separate

components are calculated. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In ceramic materials a common source of internal stresses is the thermal expansion anisotropy (Al2O3)
or the thermal mismatch (Si±Si3N4) in the components, as well as a phase transformations (ZrO2). In
some cases (for example during cooling from the fabrication temperature), residual stresses are large
enough to produce microcracking along grain boundaries or macrocrack propagation (Cutler and
Vircar, 1985; Luo and Stevens, 1993). The strength calculations of the composites serve as examples of a
nonlinear problem. Although signi®cant advancement has been archived with respect to disorder and
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nonlinearity separately, the situation becomes quite complex and interesting when both are important.
Since the widely used Mori±Tanaka method of average deformation allows one to estimate only average
stresses in components (see, for references, Buryachenko, 1996), it is evident that they are used for
linearization of functions describing nonlinear e�ects, such as strength (Arsenault and Taya, 1987;
Reifsnider and Gao, 1991). This can lead to qualitatively wrong conclusions, because of signi®cant
inhomogeneity of the stress ®eld in the components (especially in the matrix), which will be shown in the
present paper by an example of a composite with isotropic components.

The exact solution is possible for deterministic structure by means of numerical methods. Composites
with regular structure (Evans, 1987, 1989; Fu and Evans, 1985; Tvergard and Hutchinson, 1988) and
modi®cations of self-consistent scheme models (Laws and Lee, 1989) among them are only two-
dimensional and, often the elastic anisotropy is neglected. Although these regularization theories allow
detailed stress calculations (for instance local stress intensity factors for ¯aws in the real interface can be
derived), they do not seem suited to describe the real three-dimensional and stochastic microstructure of
polycrystals.

A signi®cant advance has been made in the study of residual stresses by the Monte-Carlo method of
numerical simulation of the random structure of materials (Ortiz and Suresh, 1993; Nakamura and
Suresh, 1993). Because of the long computing time, two-dimensional models of composites with a
special random structure are used. The numerical simulation points to the fact that the spatial
distribution of components has a signi®cant e�ect on the local stresses. Therefore, these methods do not
seem suited to predicting the strength of three-dimensional random structures.

Another direction of residual stress research is directly related to the derived exact relation for second
statistical moment of stress averaged over volume of the composite of some special structure if one
neglects the nonhomogeneity of elastic constants (see for references Buryachenko, 1999b). This second
stress moment is given the name covariance matrix by Ortiz and Molinari (1988). They assumed that the
residual stresses at each point are normally distributed and used a standard method of calculation of
microcrack formation under random loading.

The study of macrocrack propagation in composite materials is of immediate interest to industry. The
problem of interaction between a crack tip and a source of internal stress (which is given an Eshelby
transformation of its stress-free state) is discussed by a number authors (see, for references, e.g. Rice
and Pohanka, 1979; Stump and Budiansky, 1989; Rice, 1985). A considerable number of papers are
concerned with a study of crack-microcracks or crack-microinclusions interactions (appropriate, but by
no means exhaustive, references are provided by the review of Kachanov, 1993; see also Cutler and
Vircar, 1985; Taya et al., 1990; Chudnovsky and Wu, 1993; Nemat-Nasser and Hori, 1993; Bover and
Ortiz, 1993). As this takes place, a variety of simpli®cation are used: two-dimensional problem, regular
structure of the microdefect ®eld, approximation of microcrack array by a `soft inclusion', weak
interaction between microinclusions, numerical simulation of inclusion distribution with subsequent
solution of the determinate problem.

Previous analyses in fracture mechanics have not usually focused on the in¯uence of the statistical
e�ects of residual stresses. But it becomes obvious that, because of random residual stresses, the energy
release rate at a tip of crack is also random. With the simplifying assumption of an elastically
homogeneous plane with a macrocrack, the random ®nite set of inclusions is modeled as an elastic
continuum within which the deterministic stress-free transformation has a magnitude equal to a
statistical average of the random transformed ®eld (McMeeking and Evans, 1982; Budiansky et al.,
1983; Lambropoulos, 1986). Taking into account the stochastic nature of the problem being analyzed
and Monte Carlo simulation, Lipetzky and Kreher (1994) considered a two-dimensional problem with a
macrocrack inside the random ®eld of residual stresses.

In the present paper, we consider a linearly elastic composite medium, which consists of a
homogeneous matrix containing a crack and a homogeneous and statistically uniform random set of
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ellipsoidal inclusions; elastic properties of matrix and the inclusions are the same, but stress-free strains
¯uctuate. We obtain the estimation of both the average and conditional average of stress intensity
factors. We show that, at least for an in®nite statistically homogeneous ®eld of transforming inclusions,
the proposed method leads to a valid result (average stress intensity factor equals zero), which cannot be
applied for practical purposes. The relations for statistical second moments of stresses in the vicinity of
crack tip averaged over ensemble realization are proposed as well. We show a fundamental di�erence
between the estimations of statistical moments of stresses for an in®nite inclusion ®eld and for an
arbitrary large (but ®nite) inclusion cloud. The case of regular structure of the inclusions is discussed as
well.

Of course the composite can be considered as a medium with an in®nite number of randomly located
elements under random loading of each one. In this case the problem of fracture calculations becomes
rather complicated although phenomenological methods of its approximate solution are well known (see
Bolotin, 1993; Sobczuk and Spencer, 1991), and will not be pursued in this paper. In the present paper,
a simple method of strength and fracture calculations is proposed which can be employed in the
micromechanics of composites and is based on the use of a random character of stresses within
components. As an example of this method one shows the in¯uence of random character of residual
stresses on the probability of fracture of composites.

2. Interaction of the crack and inclusion in an in®nite matrix

Let us consider a penny-shaped crack with radius R c, center xc=(0, 0, 0) and unit normal n=(1, 0, 0)
to the crack surface S in an in®nite elastic body. It is well known that the problem of a linear elastic
solid with a crack under remote loading ss(x) has the same stress intensity factors as the problem with
the crack faces loaded by traction t(s)=ÿn(s)ss(s) (s $ S ) and stresses vanishing at in®nity. This loading
generates a singular stress components ss ahead of the crack tip z $ G c

sss�x�0J�y, z�= ���
r
p

, �1�
where r � mins2Gc jxÿ sj is a minimum distance between x and crack tip G c, z � arg mins2Gc jxÿ sj; (r, y )
are the polar coordinates of the point x with the origin of the polar coordinates located at the point z.
J(y, z) is a tensor stress intensity factor, which is connected with the usual stress intensity factors (SIF)
K(z)

Kj�z� � J1j�0, z�
������
2p
p

, � j � 1, 2, 3�: �2�
In so doing, the axes of the local system are labeled to agree with mode number designations for

stress intensity factors Kj ( j = 1, 2, 3) (see Rice, 1989) and K(z)=(K1(z), K2(z), K3(z))
~0 (KI(z), KII(z),

KIII(z))
~ are de®ned by the integral

K�z� �
�
S

k�z, s�t�s�ds �3�

over surface s $ S from the crack-face weight functions k(z, s), for which, one may observe that
symmetry requires k12=k13=k21=k23=k31=k32=0; the tensile mode crack face weight functions, k11,
and the shear functions, k22 and k33, are given by Rice (1989) and Gao (1988). For simplicit'y sake, with
the following calculations, we will formally de®ne J(y, z) in the form of Eq. (3):
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J�y, z� �
�
S

g�y, z, s�t�s�ds, �4�

where g(y, z, s) is called of as tensor crack-face weight vector-function. By virtue of the fact that in
linear fracture mechanics, usually only the SIF Eq. (3) plays an important role, it is not necessary to
know all components of the third rank tensor, g(y, z, s), which do not coincide with the corresponding
components of k(z, s) Eq. (3).

For a penny-shaped crack in an isotropic medium, the relations of K(z) Eq. (3) may be signi®cantly
simpli®ed. We will use the solution by Fabrikant (1989), who showed that the representation Eq. (3) can
actually be expressed in the convenient complex form. Kachanov and Laures (1989) eliminated the
singularities in the proposed integrals by way of transfer to the new coordinate system; these
representations are shown in Appendix A with the corrections of some misprints.

Let us consider an in®nite medium containing a crack S and an inclusion vi with stress-free
transformation jump bb1(x), x $ vi under remote loading by the homogeneous stress ®eld, ss0 0 const.
Then the remote loading and the inclusion e�ect on a crack may be replaced by means of a traction t(s)
on a crack surface s $ S,

t�s� � ÿn�s�
�
sss0 �

�
GGG�sÿ x�bbb1�x�dx

�
, �5�

where the integral operator kernel, GG(xÿy) 0 ÿL[Id(xÿy)+HHG(xÿy)L], is de®ned by the in®nite-
homogeneous-body Green's tensor G of the LameÂ equation of an homogeneous medium with elastic
modulus tensor L. Hereafter, the integration in the volume integrals are carried out over the whole
space.

The Eq. (5) can be rewritten in more compact form

t�s� � t�s, vi, xi � � ÿn�s�
�
sss0 � Ti�sÿ xi, bbb1� �vi

�
, �6�

Ti�xÿ xi, bbb1� � �vÿ1i

�
GGG�xÿ y�bbb1�y�Vi�y�dy: �7�

For x $ vi we will use additional notation:

Qi�x, bbb1� � ÿTi�xÿ xi, bbb1� �vi � ÿ
�
GGG�xÿ y�bbb1�y�Vi�y�dy, x 2 vi, �8�

(see Buryachenko, 1999b for details; as well as Buryachenko and Rammerstorfer, 1999).
For the ellipsoidal homogeneous incision bbbi�x� � bbb�i �1 � const:, the tensors Qi�x, bbb1� �Qibbb

�i �
1 , Ti�xÿ xi,

bbb1��Ti�xÿxi �bbb�i �1 are known (see, e.g. Buryachenko and Rammerstorfer, 1997).
After that, the values of the SIF K and tensor SIF J produced by both the remote loading and a

single inclusion vi can be estimated by the use of Eqs. (3) and (4):

K�z, vi, xi � � K0�z� �K1�z, vi, xi �, �9�

J�y, z, vi, xi � � J0�y, z� � J1�y, z, vi, xi �, �10�
respectively, where

K1�z, vi, xi � � ÿ
�
S

g�z, s�n�s�Ti�sÿ xi, bbb1�dz �11�
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J1�y, z, vi, xi � � ÿ
�
S

g�y, z, s�n�s�Ti�sÿ xi, bbb1�dz, �12�

and the superscript `0' denotes SIFs in the untransformed body (bb00) subjected to the given external
loading ss0. Hereafter, the superscript `1' stands for the residual stress generated SIFs (also called the
internal SIFs). K1(z, vi, xi ) and J1(y, z, vi, xi ) identify the impact of a single isolated transformed
inclusion vi on the SIF and the tensor SIF, respectively.

3. The average and conditional mean values of SIF for isolated crack in composite material

Let a penny-shaped crack of radius R c with center xc=(0, 0, 0) and unit normal n=(1, 0, 0) be
located in an elastically homogeneous composite with a statistical homogeneous ®eld of transformed
inclusions vi (i = 1, 2,...). In the subsequent presentation, we will make use of the following de®nition
for some functions f(ss, t, J, K). The notations, f(x|vi, xi) and f(x|S, vi, xi), denote the values of the
random function f of the surrounding inclusions at the point x, under the condition that the inclusion, vi
with center xi, is ®xed (in the absence of a crack) and under the condition that the inclusion vi and the
crack S are ®xed, respectively. The notations hf(x)|vi, xii and hf(x)|S, vi, xii are used for the conditional
averages of appropriate random variables taken for the ensemble of a statistically homogeneous ergodic
®eld X=(vj ). An added sign `;' in the conditional average hf(x)|;vi, xii denotes the case x ( vi.

The stress ®eld in any point x is de®ned by the superposition of the external loading ss0 and by the
perturbation generated by both the transformed inclusions and by the crack

sss�x� � sss0 �
�
GGG�xÿ y��bbb1�y� ÿ hbbb1i�dy� J�y, z�= ���

r
p

: �13�

The expected value of the right-hand-side integral in Eq. (13) over the ensemble realization vanishes

h
�
GGG�xÿ y��bbb1�y� ÿ hbbb1i�dyi � 0, �14�

and the expected value of the tensor K is de®ned by Eq. (3),

hK�z�i �
�

k�z, s�ht�s�ids, �15�

where the expected value of the traction ht(s)i may be found by the use of Eq. (14),

ht�s�i � ÿn�s�
�
sss0 � h

�
GGG�sÿ y��bbb1�y� ÿ hbbb1i�dyi

�
� ÿn�s�sss0: �16�

Thus the expectation value of SIFs K coincides with the stress intensity factor K0(z) for an isolated
crack inside the in®nite medium without residual stresses:

hK�z�i � K0�z�: �17�
This result is an exact one and does not depend on the microtopology of statistically homogeneous

composites, this is a consequence of a self-equilibrium of internal residual stresses hssi (x)0 ss0. It is
obvious that the use of this estimation makes no sense for strength calculation. The applications of Eqs.
(15) and (16) do not seem suited to strength calculations because the fracture takes place at a particular
point in the vicinity of a crack tip. This point may be located inside either the matrix or in an inclusion.
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Therefore, for the fracture analysis of composites, the estimations of conditional averages, either
hK(z)|vi, xii or hK(z)|v0, x0i, under the conditions that either the center of the inclusion vi or the matrix
v0 are located in the point xi or x0, respectively, are preferred over the average hK(z)i.

Let us locate an arbitrary inclusion vi with the center xi alongside the crack. Then the stress ®eld
ss(x|S, vi, xi) in any point x can be decomposed into

sss�xjS, vi, xi � � sssac�xjvi, xi � � J�y, zjvi, xi �= ���
r
p

, �18�
where ssac(x|vi, xi ) and J(y, z|vi, xi) are determined by the actions of the inclusions and the remote
loading (in the absence of a crack), and by the crack provided that there is a ®xed inclusion vi with the
center xi. The indicated terms may be found by the use of the formulae

sssac�xjvi, xi � � sss0 �
�
GGG�xÿ xp��bbb1�xp�V�xpjvi, xi � ÿ hbbb1i�ds, �19�

t�sjvi, xi � � ÿn�s�
�
sss0 �

�
GGG�sÿ xp��bbb1�xp�V�xpjvi, xi � ÿ hbbb1i�ds

�
, �20�

in conjunction with Eq. (4). Here, V(xp|vi, xi) is a random characteristic function of an argument xp,
under the condition that the inclusion vi with center xi is ®xed.

To estimate of conditional average of Eq. (18),

hsss�xjS, vi, xi �i � hsssac�x�jvi, xii � hJ�y, zjvi, xi �i= ���
r
p

, �21�
over the ensemble realization of the surrounding inclusions, we start with an evaluation of the
conditional average hssac(x)|vi, xii.

Averaging Eq. (19) by the use of the conditional probability density j(vp, xp|vi, xi)=d(xpÿxi)+j(vp,
xp|;vi, xi ) leads to

hsssac�x�jvi, xii � sss0 � Ti�xÿ xi, bbb1� �vi �
��

Tp�xÿ xp, bbb1� �vpj�vp, xpj;vi, xi � ÿ GGG�xÿ xp�hbbb1i
�
dxp: �22�

Here, it is necessary to recognize two cases of the location x: x $ vi and x ( vi. Here and below, for
formula simpli®cations, we will use the assumption of a special composite structure (see Eq. 3.14 in
Buryachenko, 1999b), which includes the case of statistical isotropy of composites. Then in the ®rst case,
when x $ vi, we obtain

hsssac�x�jvi, xii � sss0 �Qihbbb1i ÿQi�x, bbb1�: �23�
If the relevant point, x, lies outside the ®xed inclusion vi, Eq. (22) can be used. As can be seen from

Eq. (22), the range of the action of surrounding inclusions vp ( p$i ) is localized in the neighborhood of
®xed inclusion vi; that is, the so-called locality principle (see, e.g. Buryachenko and Lipanov, 1986a,
1986b).

We now turn our attention to the analysis of the case when the point considered x0 is located inside
the matrix v0. Analogously with Eq. (22), we ®nd

hsssac�x�jv0, x0i � sss0 �
��

Tp�xÿ xp, bbb1� �vpj�vp, xpj;v0, x0� ÿ GGG�xÿ xp�hbbb1i
�
dxp: �24�

In a similar manner, the estimation of the conditional expectation of values ht(s)|vi, xii and ht(s)|v0, x0i
may be derived:
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ht�s�jvi, xii � ÿn�s�
�
sss0 � Ti�xÿ xi, bbb1� �vi �

��
Ti�xÿ xp, bbb1� �vpj�vp, xpj;vi, xi �

ÿ GGG�xÿ xp�hbbb1i
�
dxp

�
,

�25�

ht�s�j;v0, x0i � ÿn�s�
�
sss0 �

��
Tp�xÿ xp, bbb1� �vpj�vp, xpj;v0, x0� ÿ GGG�xÿ xp�hbbb1i

�
dxp

�
: �26�

When calculation of the right-hand-side integrals in Eqs. (25) and (26) is carried out, it is necessary to
test the possible locations s with respect to the inclusion vp: s $ vp or s ( vp, that can be calculated with
ease.

After ®nding the average conditional tractions on the crack face described by Eqs. (25) and (26), we
obtain the ®nal result for the conditional expectation of values of both SIFs and the tensor SIFs:

hK�z�jvJ, xJi �
�
S

k�z, s�ht�s�jvJ, xJids �27�

hJ�y, z�jvJ, xJi �
�
S

g�y, z, s�ht�s�jvJ, xJids, �28�

respectively. Hereafter, to shortening the representations, the subscript J=0, i (i=1, 2,...) indicates the
location of the point xJ inside either the matrix v0 (J = 0) or the inclusion vi (J=i; i = 1, 2,...); in so
doing, T0(xÿx0, bb1) is taken as zero.

It is interesting to note that the conditional average stresses inside each component in the absence of a
crack (i=1, 2,...)

hsssacii � sss0 �Qi

�
hbbb1i ÿ hbbb�i �1 ii

�
�29�

hsssaci0 � sss0 � 1

c�0�
XN
i�1

c�i �
h
hQibbb

�i �
1 ii ÿQihbbb1i

i
, �30�

do not depend on either of the conditional probability densities, j(vp, xp|;vi, xi ) or j(vp, xp|;v0, x0), of
the inclusion arrangement. At the same time, according to Eqs. (25) and (26), the conditional average of
SIFs (Eqs. (27) and (28)) are explicitly expressed in terms of j(vp, xp|;v1, xi ) and j(vp, xp|;v0, x0). For xi,
x0 at in®nity far from the point at the crack tip, Eqs. (27) and (28) lead to the vanishing results,
hK1(z)|vi, xii=hK1(z)|v0, x0i=hK1(z)i0 0, and the mean stresses inside each component are de®ned by
Eqs. (29) and (30).

4. Conditional dispersion of SIF for a crack in the composite

To obtain the conditional second moment of the SIF and, consequently, the stresses in the
neighborhood x $ vi of the crack tip, it is necessary to take the tensor product of Eq. (18) into ss(x|S, vi,
xi),
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sss�xjS, vi, xi � 
 sss�xjS, vi, xi � �
�
sssac�xjvi, xi � � J�y, zjvi, xi �= ���

r
p �


 �sssac�xjvi, xi � � J�y, zjvi, zi �= ���
r
p �

:
�31�

Averaging Eq. (31) over the ensemble realization in terms of Eqs. (24) and (26) leads to the
conditional expectation of Eq. (31), composed from three terms

hsss�xjS, vi, xi � 
 sss�xjS, vi, xi �i � I20 � I21 � I22: �32�

The ®rst term, I20, is determined by the second moment of stresses in the point x $ vi in the absence of
a crack (Eq. 4.3 in Buryachenko, 1999b)

I20 � hsssac 
 sssacii�x� � hsssacii 
 hsssacii �
��

Tp�xÿ xp, bbb1� �vp
�
 �Tp�xÿ xp, bbb1� �vp

�
� f�vp, xpj;vi, xi �dx�

� ��
Tp�xÿ xp, bbb1� �vp

�
 �Tq�xÿ xq, bbb1� �vq
�
j�vp, xpj;vi, xi �

� �j�vq, xqj;vp, xp;vi, xi � ÿ j�vq, xqj;vi, xi ��dxq dxp:

�33�

The second term, I21 Eq. (31), as opposed to I20, has a singularity, rÿ1/2,

I21
���
r
p � hsssacii�x� 
 hJ�y, z�jvi, xii � hJ�y, z�jvi, xii 
 hsssaci�x�i �

�n�
Tp�xÿ xp, bbb1� �vp

�

 J1�y, z, vp, xp� � J1�y, z, vp, xp� 


�
Tp�xÿ xp, bbb1� �vp

�o
j�vp, xpj;vi, xi �dxp

�
�n�

Tp�xÿ xp, bbb1� �vp
�
 J1�y, z, vq, xq� � J1�y, z, vp, xp� 


�
Tq�xÿ xq, bbb1� �vq

�o
j�vp, xpj;vi, xi �

� �j�vq, xqj;vp, xp;vi, xi � ÿ j�vq, xqj;vi, xi ��dxq dxp:

�34�

Finally the third term, I22 Eq. (32), has a singularity, rÿ1,

I22r � hJ�y, z�jvi, xii 
 hJ�y, z�jvi, xii �
�

J1�y, z, vp, xp� 
 J1�y, z, vp, xp�j�vp, xpj;vi, xi �dxp

�
� �

J1�y, z, vp, xp� 
 J1�y, z, vq, xq�j�vp, xpj;vi, xi ��j�vq, xqj;vp, xp;vi, xi �

ÿ j�vq, xqj;vi, xi ��dxqdxp:

�35�

The third term, I22 Eq. (32), is most important for the application to fracture mechanics because Eq.
(32) is a conditional elastic energy, and the contribution of I20 and I21 to Rice's integral (Rice, 1985)
equals zero. It is interesting to compare the relation I20 Eq. (33) and I22 Eq. (35). The ®rst terms in the
right hand sides of Eqs. (33) and (35) are de®ned by the conditional averages of stresses in the absence
of a crack Eqs. (29) and (30), and by the conditional average of the principal part of the stresses in the
neighborhood of the crack tip Eq. (21). The second and third terms on the right hand sides of Eqs. (33)
and (35) are less trivial; they are the conditional covariance matrix of corresponding values.

If the matrix is located in the vicinity of a crack tip, then the covariance matrix of the principal part
of the stresses Eq. (13) can be derived in much the same way as Eq. (35)
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hsss�xjS, v0, x0� 
 sss�xjS, v0, x0�ir � hJ�y, z�jv0, x0i 
 hJ�y, z�jv0, x0i �
�

J1�y, z, vp, xp�


 J1�y, z, vq, xq�f�vp, xpj;v0, x0�dxp �
� �

J1�y, z, vp, xp� 
 J1�y, z, vq, xq�

� j�vp, xp, j;v0, x0��j�vq, xq, j;vp, xp;v0, x0� ÿ j�vq, xqj;v0, x0�� dxq dxp,

�36�

where hJ(y, z)|v0, x0i can be found in a manner like Eqs. (26) and (29).
After the production of Eqs. (35) and (36), it is an easy matter to obtain the conditional second

moment of SIF hK(z|vi, xi) 
 K(z|vi, xi)i, hK(z|v0, x0) 
 K(z|v0, x0)i for x1 and x0 are in®nitely far from
the crack tip. Evidently, SIF does not depend on the coordinate of the ®xed point hK�zjvi, xi � 
K�zjvi,
xi �i4hK�z� 
K�z�i � const:6�K0�z� 
K0�z� and hK�zjv0, x0� 
K�zjv0, x0�i4hK�z� 
K�z�i � const:6�
K0�z� 
K0�z�, respectively.

5. Statistical moments of arbitrary orders for the tensor SIF

The estimation method of the second moments of the tensor SIF (Eqs. (33) and (36)) is used to
evaluate the statistical moments of any order of the tensor SIF. For example, for the third order
moment, we take the tensor product of Eq. (31) into ss(x|S, vi, xi), x $ vi,

sss�xjS, vi, xi � 
 sss�xjS, vi, xi � 
 sss�xjS, vi, xi � �
�
sssac�xjvi, xi � � J�y, zjvi, xi �= ���

r
p �


 �sssac�xjvi, xi � � J�y, zjvi, xi �= ���
r
p �
 �sssac�xjvi, xi � � J�y, zjvi, xi �= ���

r
p �

:
�37�

For simplicity's sake, only the binary interaction of the inclusions are taken into account for the
integral equation Eq. (37). When one averages Eq. (37) over realization of the ensemble inclusions with
regard to Eq. (32), we obtain

hsss�xjS, vi, xi � 
 sss�xjS, vi, xi � 
 sss�xjS, vi, xi �i � I30 � I31 � I32 � I33, �38�
where the terms I3q (q=0, 1, 2, 3) have the singularities, rÿq/2.

The therm of greatest practical utility is a principal part of stresses I33 which can be represented in the
index form (Voigt's notation k, l, m=1,..., 6)

I33klm � rÿ3=2
�hJk�y, z�jvi, xii 
 hJl�y, z�jvi, xii 
 hJm�y, z�jvi, xii � DJ2

kl�y, zjvi, xi �


 hJm�y, z�jvi, xii � DJ2
km�y, zjvi, xi � 
 hJl�y, z�jvi, xii � DJ 2

lm�y, zjvi, xi �


 hJk�y, z�jvi, xii � DJ3
klm�y, zjvi, xi �

	
,

�39�

where, taking Eq. (32) into account, the tensor DJ2(y, z|vi, xi) is de®ned by both the double and triple
correlation functions of the inclusions,

DJ2�y, zjvi, xi � �
�

J1�y, z, vp, xp� 
 J1�y, z, vq, xq� � f�vp, xpj;v0, x0�dxp �
� �

J1�y, z, vp, xp�


 J1�y, z, vq, xq�j�vp, xp, j;v0, x0� � �j�vq, xq, j;vp, xp; v0, x0� ÿ j�vq, xqj;v0, x0��dxq dxp:

�40�

The following approximation for the tensor DJ3(y, z|vi, xi) can be obtained by taking into account
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only the binary interaction of inclusions

DJ3�y, zjvi, xi � �
�

J1�y, z, vp, xp� 
 J1�y, z, vp, xp� 
 J1�y, z, vp, xp� 
 j�vp, xpj;vi, xi �dxp: �41�

The omitted terms in Eq. (41) have the second order of smallness over c.
It is interesting to compare a Gaussian distribution and distribution law of real stresses inside the

inclusions. Let the notation DGhe
... 
ei0 he
... 
eiÿheG
... 
eGi denotes the di�erence of the
moments of the real random variable he
... 
ei and its Gaussian approximation heG
... 
eGi, having a
Gaussian probability density with the ®rst and second statistical moments of the random variable e. We
will consider a dissimilar DGhJ(y, z|vi, xi) 
 J(y, z|vi, xi) 
 J(y, z|vi, xi)i between the Gaussian
distribution hJG(y, z|vi, xi)
 JG(y, z|vi, xi)
 JG(y, z|vi, xi)i and the distribution of the real tensor SIF in
the same manner as statistical stress moments inside the components have been analyzed in the
preceding paper (see Eq. 5.9 in Buryachenko, 1999b). The comparison of Eq. (39) with the third
statistical moment of the Gaussian distribution gives

DGhJ�y, zjvi, xi � 
 J�y, zjvi, xi � 
 J�y, zjvi, xi �i � DJ3�y, zjvi, xi �: �42�
Similar reasoning shows that in the framework of binary interactions of inclusions, the principal part

of a correction of n-th order to the Gaussian approximation, hJG(y, z|vi, xi)[
JG(y, z|vi, xi)]n ÿ 1i, can be
represented as

DGhJ�y, zjvi, xi ��
J�y, zjvi, xi ��nÿ1i � DJn�y, zjvi, xi � �
�

J1�y, z, vp, xp�

� �
J1�y, z, vp, xp��nÿ1j�vp, xpj;vi, xi �dxp:

�43�

If in Eqs. (39), (40), (41), (42) and (43), the index i is changed to 0, we will obtain the pertinent results
for the statistical moments of the tensor SIF under the condition x, x0 $ v0.

6. Crack in a ®nite inclusion cloud

Within a wealth of practical problems, there is a need for an analysis of the ®nite inclusion ®eld. So
the high stresses in the vicinity of macroscopic crack induce a transformation toughening of zirconia
(ZrO2) inclusions embedded in a matrix of non-transforming ceramic. When ZrO2 particles are
unconstrained by the surrounding matrix, their transformation from tetragonal to a monoclinic crystal
structure can be decomposed into a volume expansion of 4% and a shear of about 16% (Budiansky et
al., 1983; Lambropoulos, 1986). This transformation, in turn, alters the stress distribution near the crack
tip. In this connection, we will consider the case of a statistically inhomogeneous inclusion ®eld, when
number probability density is a function of current coordinate and equals zero outside of some domain
w ®n with characteristic function W ®n.

Then, in much the same manner as Buryachenko and Parton (1990a, 1990b), and Wang (1990), one
can obtain a general equation for random stresses at any point in the absence of a crack (denoted by
the superscript `ac')

sssac�x� � sss0 �
�
GGG�xÿ y�bbb1�y�dy �44�
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sssac�x� � hsssaci�x� �
�
GGG�xÿ y��bbb1�y� ÿ hbbb1i�y��dy: �45�

Here, the average stress hssaci(x)%ss0, in contrast to the statistically homogeneous structure, and can
be de®ned by the relation

hsssaci�x� � sss0 �
�
GGG�xÿ y�hbbb1i�y�dy: �46�

Hereafter, the notation h(�)i(x) denotes the statistical average in the point x over the ensemble
realization of the statistically inhomogeneous inclusion ®eld. If hbb1i(y) 0 hbb1i=const. in some ®nite
domain w ®n, Eq. (46) may be simpli®ed to

hsssaci�x� � sss0 �
�
GGG�xÿ y�W fin�y�dyhbbb1i: �47�

If besides, w ®n is an ellipsoid with the center x®n, then

hsssaci�x� �
�
sss0 ÿQ�wfin�hbbb1i, x 2 wfin

sss0 � Tfin�xÿ xfin�hbbb1i �wfin, x=2wfin , �48�

where T®n(xÿx®n) and Q(w ®n) are de®ned by Eqs. (7) and (8) with replacement of vi by w ®n.
From comparison of Eqs. (19) and (45), we see that the analysis of the ®nite inclusion cloud w ®n is

formally reduced to the replacement of ss0 on the determinate terms hssaci(x) in Eq. (45). Of course, as
this takes place, the number probability density, f(vi, xi), and the conditional density, f(vp, xp|;vi, xi),
determining the values of the right-hand-side integrals in Eqs. (45) and (46), are functions of a
coordinate xi and are not invariants with respect to translations xi4 xi+y.

Thus we obtain the estimations for both the average SIFs and the average tensor SIFs

hK�z�i � K�hsssaci, z� � ÿ
�
S

k�z, s�n�s�hsssaci�s�ds, �49�

hJ�y, z�i � J�hsssaci, y, z� � ÿ
�
S

g�y, z,s�n�s�hsssaci�s�ds: �50�

For example, for the crack tip inside the statistically homogeneous inclusion cloud w ®n, having an
ellipsoidal shape, we have

hK�z�i � K0�z� ÿ
�
S

k�z, s�n�s�W�s�dsQ�wfin�hbbb1i: �51�

This reproduces the known results from the two-dimensional models developed in the literature on
transformation toughening of ceramics (McMeeking and Evans, 1982; Lambropoulos, 1986; Stump and
Budiansky, 1989). Eq. (51) does not depend on the microgeometric structure of he composite and is
correct for the case when the distance between the crack tip and the cloud boundary is large enough.

However, the local distribution of the stresses near the crack tip plays a crucial role in linear fracture
mechanics. Because of this let us now turn to the estimations of conditional expectation values of both
the SIF and the tensor SIF. With this aim in view, the conditional expectation of stress values can be
found in much the same way as Eqs. (22) and (24)
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hsssac�x�jvJ, xJi � hsssaci�x� � TJ�xÿ xJ, bbb1� �vJ �
��

Tp�xÿ xp, bbb1� �vpj�vp, xpj;vJ, xJ�

ÿ GGG�xÿ xp�hbbb1i�xp�
�
dxp,

�52�

where the subscript J=0, i (i=1, 2,...) indicates the location of the point xJ inside either the matrix, v0
(J=0), or the inclusion, vi (J=i; i=1, 2,...). Contrary to Eqs. (22) and (24), the right-hand-side of Eq.
(52) consists of both the average stresses, hssaci % ss0 estimated above by Eq. (46) and the
macroscopically inhomogeneous deterministic tensor, hbb1i(xp ), describing the statistical inhomogeneous
transformed ®eld. Substituting Eq. (52) into Eq. (4) gives the conditional expectation of the value of the
tensor SIF

hJ�y, z�jvJ, xJi � hJfluct�y, z�jvJ, xJi � hJ�hsssaci, y, z�i, �J � 0, i;i � 1, 2, . . .�, �53�
where the average tensor SIF hJ(hssaci, y, z)i% J0(y, z) is estimated by Eqs. (46) and (50) for the
macroscopically inhomogeneous cloud w ®n with the deterministic transformed ®eld hbb1i(x). The
¯uctuating constituent term hJ¯uct(y, z)|vJ, xJi (J=0, i; i=1, 2...) is de®ned by the formula

hJfluct�y, z�jvJ, xJi � ÿ
�
S

g�y, z, s�n�s�
�

TJ�xÿ xJ, bbb1� �vJ �
��

Tp�xÿ xp, bbb1� � �vpj�vp, xpj;vJ, xJ�

ÿ GGG�xÿ xp�hbbb1i�xp�
�
dxp

�
ds

�54�

and formally coincides with a similar representation for a statistically homogeneous in®nite inclusion
®eld, although at the considered juncture, the probability densities f(vi, xi) and f(vp, xp|;vJ, xJ) (J=0, i;
i=1, 2,...) are insensitive to translations.

Repeating the derivation of Eqs. (35) and (36) gives the covariance matrix of the principal part of the
conditional average stresses in the components (J=0, i )

hsss�xjS, vJ, xJ� 
 sss�xjS, vJ, xJ�i � 1

r
hJ�y, z�jvJ, xJi 
 hJ�y, z�jvJ, xJi � 1

r

�
J1�y, z, vp, xp�


 J1�y, z, vp, xp�j�vp, xpj;vJ, xJ�dxp � 1

r

� �
J1�y, z, vp, xp� 
 J1�y, z, vq, xq�j�vp, xpj;vJ,

xJ� � �j�vq, xqj;vp, xp;vJ, xJ� ÿ j�vq, xqj;vJ, xJ��dxq dxp,

�55�

where hJ(y, z)|vJ, xJi is de®ned by Eq. (53), and J1(y, z, vp, xp) describes the impact of a single isolated
inclusion on the stress distribution in the vicinity of a crack tip Eq. (12). As can be shown in a concrete
numerical example, the conditional average hss|vi, xii(x) for x $ viWw ®n can di�er signi®cantly from the
statistical average hssi(x), which leads to all the more di�erence between estimation obtained by use of
the popular Eq. (50) as compared to the more accurate Eqs. (53) and (55).

7. Crack in regular inclusion ®eld

At the present time, high-e�ciency numerical methods are developed for calculation of e�ective
properties and stress distribution inside composites of regular structures (see, as an example, the survey
in Walker et al., 1990; Bensoussan et al., 1978). It turns out that for elastically homogeneous
composites, the noted problem can be solved simply and exactly in the context of the theory at hand in
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conjunction with Buryachenko and Parton (1992a, 1992b) (see also Buryachenko, 1999a). In fact, let us
consider a spatial grid of ellipsoidal inclusions with the same form, orientation and stress-free strains
which are located in the nodes of this grid. Suppose ek (k= 1, 2, 3) are linearly-independent vectors of
the principal period of the grid, so that any node xi may be represented in the form

xi �
X3
k�1

mi
kek, �i � 1, 2, . . .�, �56�

where mi
k are integer-valued coordinates of the node xi in the periodic basis (ek). Then the general

equation for the stresses Eq. (45) in any point x, in the absence of a crack, will take the form

sssac�x� � sss0 ÿQi�x, bbb1� �Q�wfin�hbbb1i �
X
i 6�j

Tj�xÿ xj, bbb1� �vj �57�

for x $ vi and

sssac�x0� � sss0 �Q�wfin�hbbb1i �
X
j

Tj�x0 ÿ xj, bbb1� �vj �58�

at x $ v0. In Eqs. (57) and (58), we take into account that xi coincides with the center of some ellipsoidal
domain w ®n, which contains a reasonably large number of inclusions; x lies inside the periodic cell Oi %
vi. In Eqs. (57) and (58), the summation is over all xj $ w ®n, in view of xj$xi in Eq. (57); the form and
the size (for a su�ciently large size of the domain w ®n) have no in¯uence on the calculated stresses (Eqs.
(57) and (58)).

After obtaining the periodic determined stress ®eld, ssac(x) (Eqs. (57) and (58)) and therefore t(s), SIF
can be found by the use of Eq. (3). Of course in the determinate case being analyzed, DJ2(y, z|vi, xi)00.

8. E�ective limiting surfaces of composite materials

8.1. E�ective strength surface

Let us assume that the tensor±polynomial strength criterion is de®ned for each component, i.e.

PPP�sss� � PPP2�i �sss�PPP4�i ��sss
 sss� �PPP6�i ��sss
 sss
 sss� � . . . � 1, �59�
where i = 0,1,..., and the second-, fourth- and sixth-rank tensors of strength PP2, PP4 and PP6 are
expressed through technical strength parameters for di�erent classes of material symmetry (Theocaris,
1991; Jang and Tennysin, 1989).

Note, that a common way to produce e�ective strength of a surface is substitution of the component
average stress values into Eq. (59) (i=0, 1,...) (Arsenault and Taya, 1987; Reifsnider and Gao, 1991)

PPP��sss� � max
i

�
PPP2�i �hsssii �PPP4�i ��hsssii 
 hsssii � �PPP6�i ��hsssii 
 hsssii 
 hsssii � � . . .

�
� 1: �60�

As this takes place, the strength criteria in Eq. (60) brings us to physically inconsistant results, which
will be shown later.

It seems that the following de®nition of e�ective surface strength will be more correct
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PPP��sss� � max
i

�
PPP2�i �hsssii �PPP4�i �hsss
 sssii �PPP6�i �hsss
 sss
 sssii � . . .

�
� 1, �61�

where the estimations of average stress moments of di�erent orders, hssii, hss 
 ssii, hss 
 ss 
 ssii (i = 0,
1,...), can be found by use of the relevant formulae from Buryachenko (1999b).

If the possibility of interfacial fracture is taken into account, the macrostrength criterion can be
express in the following form (i=0, 1,...)

PPP�a�sss� � max

�
PPP � �hsssi�, max

i
max

n

h
PPP2�i �

a hsssÿ�n�ix �PPP4�i �
a hsssÿ�n� 
 sssÿ�n�ix

�PPP6�i �
a hsssÿ�n� 
 sssÿ�n� 
 sssÿ�n�ix � . . .

i�
� 1,

�62�

where hssÿ(n)ix, hssÿ(n) 
 ssÿ(n)ix and hssÿ(n) 
 ssÿ(n) 
 ssÿ(n)ix are the statistical moments of limiting
stresses within the matrix near the inclusion boundary x $ @vi, with the unit outward normal vector n
(Eq. 5.14 in Buryachenko, 1999b). Generally speaking, the adhesion strength parameters, PPP2�i �

a , PPP4�i �
a

and PPP6�i �
a di�er from PP2(i ), PP4(i ) and PP6(i ).

Let us show the physical consistency of the e�ective strength criterion (Eqs. (61) and (4)) (in contrast
to Eq. (60)). In fact, let us consider a two-component isotropic composite with isotropic ones. In this
case, one may observe that symmetry requires that the average stresses inside both components will be
hydrostatic; one hskli1 � hskli0�1ÿ c�=c � s011dkl; in so doing, the microstructure of, and the method of
calculation of, the average stresses inside the components (for example, Eq. 3.8 in Buryachenko, 1999b;
or any other formula) in¯uence the value of the scalar s011, but have no e�ect on the tensor structure of
the ®elds, hssi0 and hssi1. Then the composite strength is dictated by the strength of the component
which is to be found under conditions of hydrostatic tension and is not determined by the strength of
the second component. If the strength of the second component falls far short of the strength of the
®rst, we will obtain improper prediction of composite strength. In fact, according to Eqs. 4.5 and 4.15 in
Buryachenko, 1999a, 1999b, the average values of the second deviator invariant inside each component
hssii$0 (skl0sklÿsnndkl/3; i = 0, 1,...). Therefore, the composite strength is de®ned by the strength of
the second, weaker component at the cost of the ¯uctuations of the stress deviator.

8.2. E�ective energy release rate of an isolated crack in the composite

Let us consider a penny-shaped crack of radius R c with center xc=(0, 0, 0) and unit normal n=(1, 0,
0) to the crack surface S in an in®nite elastic homogeneous medium. The energy release rate may be
de®ned by means of K0(K1, K2, K3)

~

J � LLL�K
 K �, �63�
where, for the general anisotropic, material the matrix Lij (i, j = 1, 2, 3) is symmetric (see Barnett and
Asaro, 1972; Rice, 1989). For an isotropic material, the matrix Lij Eq. (63) is diagonal

LLL � �2m�ÿ1 diag�1ÿ n, 1ÿ n, 1�: �64�
The energy release rate, J, could alternatively expressed as a path-independent line Jr Rice's integral,

which is invariant with respect to the integration along an arbitrary path encircling the crack tip (see,
e.g. Nied, 1994; Wilson and Yu, 1979).

The energy rate J provides a means to introduce a crack propagation criterion on a physical basis: a
crack can propagate if the potential energy released per unit area of newly created crack surface exceeds

V.A. Buryachenko / International Journal of Solids and Structures 37 (2000) 4211±42384224



the work which is consumed in creating this new amount of surface. The fracture criterion that will be
used for the remainder of this work is therefore based on the equality

J � Jc � 2g, �65�

where g is called the fracture surface energy. For homogeneous external loading, the equation

J � 2g �66�

de®nes the surface of the second order, in a six-dimensional space, of stresses ss. In particular, for a
penny shaped crack with radius R c, Eqs. (5) and (66) turn into

2�1ÿ n�Rc

pm

 
s211 �

�
2

2ÿ n

�2
s212 �

�
2�1ÿ n�2
2ÿ n

�
s213

!
� 2g, �67�

(see, e.g. Murakami, 1987). Thus, we have obtained the strength criterion Eq. (67) in terms of Eq. (59),
in which the strength tensor PP4 is a function of the size and orientation of the crack. This analogy
permits the use of the strength calculation method of composites developed in Section 8.1.

Let us consider a crack within a statistically homogeneous inclusion ®eld. At ®rst glance, it would
seem that it is possible to de®ne the ®rst approximation to an estimated e�ective energy release rate
J�(z) by means of SIF

J��z� � LLL�hK�z�i 
 hK�z�i� � LLL�K0�z� 
K0�z��, �68�

where the equality follows from Eq. (17) and indicates that the residual stress generated, J�(z) (at ss00
0) is very much determined by stress ¯uctuations in the vicinity of the crack tip.

Use of a conditional SIF is expected to be more correct (k=0, 1,...),

J��z� � max
k

max
xk

J�hK�z�jvk, xki�hgi=g�k� � 2hgi �69�

J�hK�z�jvk, xki� � LLL
�hK�z�jvk, xki 
 hK�z�jvk, xki

�
, �70�

where the multiplier hgi is introduced for the purpose of preserving the conservation of the
dimensionality of J�. This multiplier is used for the case g (0) > g (i) (8i = 1, 2,..., N ); otherwise the
multiplier hgi should be replaced by the factor h1/gi.

Eq. (69) is based on the concept of the weakest link. The mixture rule can be realized by the use of
the total probability formula,

J��z� � �1ÿ c�J�hK�z�jv0, x0i�hgi=g�0� �
XN
m�1
hgin�m�=g�m�

�
LLLhK�z�jvm, xmi


 hK�z�jvm, xmiV z
m�xm�dxm � 2hgi,

�71�

where V z
m designates a characteristic function of the inclusion vm with the center z; Eq. (70) has been

outlined for spherical inclusions and can be used as an approximation in the general case.
However, at this time, we can calculate the second conditional moments of SIF and, therefore, it

would appear reasonable that the generalization of Eqs. (69) and (71) is (k=0, 1,...)
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J��z� � max
k

maxfromxkhJ�z�jvk, xkihgi=g�k� � 2hgi �72�

J��z� � �1ÿ c�hJ�z�jv0, x0ihgi=g�0� �
XN
m�1
hgin�k�=g�m�

�
hJ�z�jvm, xmiV z

m�xm�dxm � 2hgi, �73�

respectively, where k=0, 1,..., and

hJ�z�jvk, xki � LLLhK�zjvk, xk� 
K�zjvk, xk�i �74�
can be found from the formulae for the second stress moment in the vicinity of a crack tip (Eqs. (32)
and (36)); in so doing, only the singularity terms proportional to degree ÿ1 in r are taken into account
in the calculation of hJ(z)|vk, xki because, according to Wilson and Yu (1979), the contribution of terms
with the lesser singularity equals zero.

It should be noted that the energy release rate is a nonlinear function of SIF and SIF, in turn, is a
random value. A schematic representation of Eqs. (69) and (70) is based on the assumption hJ|vJ,
xJi=J(hK|vJ, xJi) (J = 0, i; i = 1, 2,...) which produces a large error as the SIF dispersion increases.
For analysis of stress ¯uctuation e�ects, we will de®ne a ¯uctuation part of both the expectation and
conditional expectation of values of the energy release rate (J=0, i; i=1, 2,...)

DJ�z� � hJ�z�i ÿJ�hK�z�i� �75�

DJ�zjvJ, xJ� � hJ�z�jvJ, xJi ÿJ�hK�z�jvJ, xJi�, �76�
where the terms in the right-hand-side of Eq. (76) are determined by Eqs. (74) and (70), respectively.
Taking Eq. (68) into account, the second term of the right-hand-side of Eq. (75), J(hK(z)i) is de®ned
only by the remote stresses: J(hK(z)i)=J(K0(z)). Moreover, in conformity with the Jensen inequality
for the convex function, J=J(K), we have the following inequalities: DJ(z)r0 and DJ(z|vJ, xJ )r0.
Here, the equalities take place if and only if the inclusion ®elds are deterministic.

8.3. Dilute concentration of microcracks

For simplicity's sake, we assume that microcrack concentration is dilute and the interaction between
microcracks can be neglected; in principle this reciprocal action can be estimated by use of the
multiparticle e�ective ®eld method (see Buryachenko and Lipanov, 1986a, 1986b; Buryachenko and
Kreher, 1995) with some additional hypothesis. We will take into account the stochastic character of the
stresses generated by the random inclusion ®eld. Of course, the microcracks may come into being at any
location (inside inclusions, the matrix and/or inclusion boundaries); but according to a large body of
experimental research (Cutler and Vircar, 1985; Tvergard and Hutchinson, 1988; Luo and Stevens,
1993), the microcracks come into existence at grain faces. For the sake of de®niteness, we will assume
that the microcracks have a penny-shaped form with R c R a and centered near the inclusion surface.
The geometrical microstructure of the composite is taken to be isotropic and, therefore, the microcrack
orientation can be selected in an arbitrary way, say, n=(1, 0, 0)~, with the center x of an inclusion. The
microcrack size is closely connected with the inclusion dimensions and we assume that it is the same as
the grain face. Then the microcrack radii R c, expressed by means of inclusion radius a by application of
the relation Rc � 2a=

����
nf
p

(see Ortiz and Molinari, 1988), where nf is the number of faces per grain and
varies between nine and eighteen; for a tetradecahedra, as an example, n=14 and therefore R c=0.53a.

At ®rst, we consider the microcrack S which is located throughout inside the inclusion SWv1. Then,
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for estimation of the conditional energy release rate, hJ(z)|v1, x1i, one can use Eq. (73) previously
obtained. However, another location of the microcrack is of more practical signi®cance. This is a case
when either part of, or the whole microcrack is inside the matrix. For this purpose, it is necessary to
evaluate at least the two-point conditional statistical moments of stresses s(x|S, v1, x1; v0, x0), where
point x0 coincides with the point z of a crack tip G c. The relations for the condition average, hs(x|v1, x1;
v0, x0)i and for the conditional second moment, hs(x|S, v1, x1; v0, x0) 
 s(x|S, v1, x1; v0, x0)i, can be
easily found using Eqs. (25) and (36), through the interchange of the binary correlation function f(vp,
xp|;v1, x1) with a triple one, f(vp, xp|;v1, x1; v0, x0). In a like manner, it should present no problem to
analyze the situation when the microcrack is located completely inside the matrix near a ®xed inclusion.

9. Scheme of simple probability model of composite fracture

The proposed strength and fracture criterion (Eqs. (62), (72), (73) and (74)) are based on the
determination of the conditional averages hPP(k )(ss)i and hJ(z)|vJ, xJi (k = 0, 1,..., N; J = 0, i; i = 1,
2,...), respectively. In fracture mechanics, for random loading, another approach is known. One of these
methods is based on the calculation of the distribution, FY( y ), of some fracture parameter Y (see, e.g.
Bolotin, 1993). Such a parameter can be identi®ed with di�erent nonlinear functions of local stresses.
For example, for Y=PP(k )(ss) Eq. (59), we have a critical value y crit=1; in a similar manner in fracture
mechanics, for Y=J(K), we have y crit=2g. Thereafter, the ®rst-order estimation of the fraction of
fractured component f (or grain faces) is calculated as

f � 1ÿ FY� y�: �77�
Usually, the approach assumes that the damage density is small enough so that the interaction of

fractured elements is negligibly small.
For simplicity, the stress distribution within each component is assumed as a six-dimensional

Gaussian one, with distribution function F�k�s �sss�, ss=(s1,..., s6)
~. Then pertinent damages (or the

fracture probability of the component) can be de®ned by the relation (Bolotin, 1993) (k=0, 1,..., N )

f �k� � 1ÿ
�

dF�k��sss�, �k � 0, 1, . . . , N �: �78�

In a similar manner, the probability of a crack propagating at the point z $ G c, located either in the
matrix or inclusion vk (k=0, 1,...) can be calculated as

f �k��zjvk, xk� � 1ÿ
�

dF�k��Kjvk, xk�, �79�

where one assumes a three-dimensional Gaussian distribution of SIF with the expectation value hK(z)|vk,
xki Eq. (27) and the covariance matrix

DK2�zjvk, xk� � hK�zjvk, xk� 
K�zjvk, xk�i ÿ hK�z�jvk, xki 
 hK�z�jvk, xki, �80�
which can be found either by Eq. (32) or Eq. (36).

In the right-hand-side integrals of Eqs. (78) and (79), the integral domains are determined by one of
two inequalities (k=0, 1,..., N )

PPP�k��sss�R1 �81�
for Eq. (78) and
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LLL�k��K
 K �R2g�k� or K1 < 0 �82�
for Eq. (79). By the use of the second inequality of Eq. (82), we assume the impossibility of fracture
under compressive normal loading. The boundaries Eqs. (81) and (82) are described by the surface of
the second order in stress space in the simple case of a quadratic strength criterion Eq. (59) and an
elliptical plane crack within a homogeneous stress ®eld.

The simplest phenomenological ways of fracture probability calculation for composites (Sobczuk and
Spencer, 1991) are based either on the total probability formula,

f �
XN
k�0

c�k�f �k�, �83�

or the extreme value distribution,

f � 1ÿ
YN
k�0
�1ÿ f �k��: �84�

Ortiz and Molinari (1988) were the ®rst to consider the particular case of this scheme with an
application to random structure composites. By the use of Fourier's method, they obtained the
estimation for the second moment of stresses averaging over all volume of a composite with elastically
homogeneous properties, but with stress-free strain ¯uctuations. Because the residual stresses are self
equilibrating, we have dss 0 ssÿhssi=ss. Thereupon, Ortiz and Molinari (1988), and Ma and Clarke
(1994) have assumed that the residual stresses are normally distributed with a zero expectation in each
point of the composite. Slight modi®cation of this approach takes into account the average stresses in
the components, which can be estimated by using the exact Eq. (29). Therefore, the de®nition of the
conditional covariance matrix and probability density function and probability density function are
de®ned by the formulae (see, for details, Buryachenko and Rammerstorfer, 1998)

K
s�i �
klmn � hsklsmnii�x� ÿ hskliihsmnii, �85�

dFi
s�ds� �

1�����������������������������
�2p�N det Ks�i �p exp

ÿ
1

2
�sklÿhsklii ��K s�ÿ1klmn�smnÿhsmnii �

: �86�

10. Numerical results

10.1. The ®rst and the second statistical moments of stress intensity factors

As an example, we consider a Si3N4 composite with isotropic components L(x)=(3k, 2m ) 0
3kN1+2mN2, bb1=b10dd, N10dd
 dd/3 and N20IÿN1, containing identical SiC spherical inclusions. Based
on the results of Buryachenko (1999b), we assume an elastically homogeneous medium with the elastic
properties of the matrix k = 236.4 GPa, m=121.9 GPa (Young's modulus E = 312.1 GPa, Poisson's
ratio n=0.28), b10=ÿ1 � 10ÿ3 and the radius of the inclusions a = 10ÿ5 m. For the representation of
numerical results in dimensionless form, we de®ne the normalizing coe�cient W0ÿ3Qkb10Za, where
3Qk equals the bulk component of the tensor Qi=(3Qk, 2Qm ). The physical meaning of W follows from
Eq. (23), according to which, W varies proportionally with the component of hydrostatic stress inside a
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single isolated inclusion in an in®nite homogeneous matrix; for our concrete composite SiC/Si3N4:
W=0.914 MPa mÿ2. We will estimate the action of the alternative radial distribution function for an
inclusion (r0|xiÿxj|)

g�xi ÿ xj � � f�vi, xij;vj, xj �=ni � H�rÿ 2a� �87�
and (see Eq. 7.2 in Buryachenko, 1999b),

g�xi ÿ xj � � H�rÿ 2a�
(
1�

�
2� c

2�1ÿ c�2 ÿ 1

�
cos

�
pr
a

�)
e2�2ÿr=a�: �88�

In order to carry out the numerical estimates, we will use the expressions of the tensors Qp, Tp (xÿxp)
( p=1, 2,...), which are presented e.g. by Buryachenko and Rammerstorfer (1997).

At ®rst, we consider one ®xed inclusion v1 with the center x1=(0, R c+r, 0) near the crack tip z=(0,
R c, 0) $GGc, S_n=(1, 0, 0), and ss000. Fig. 1 shows the residual stress generated normalized mode I SIF
K 1

1�z, v1, x1�=W as a function of the normalized distance r/a from the inclusion center x1=(0, R c+r, 0)
to the crack tip z, for the di�erent relative sizes of the crack R c=1000a, R c=10a and R c=3a. It can be
seen from Fig. 1 that the variation between the calculated values, K 1

I �z, v1, x1�=W, is not more than 4%
for R c=1000a and R c=3a under |r| < a; for R c=1000a and R c=10a, this quantity is less than 2% 8r.
Therefore, for R c > 10a, the crack may be considered as a semi-in®nite crack; in the following, unless
otherwise speci®ed, we will consider the case R c=100a. It is interesting that if the inclusion is located in
the point r/a 3 0.93 (as read approximately from the graphs), it does not initiate a stress singularity
near crack tip K 1

I �z, v1, x1� � 0 (in view of the problem symmetry, K 1
II�z, v1, x1� �K 1

III�z, v1,x1� � 0 8r).
Hereafter, instances of negative K 1

I �z, v1, x1��0 are simply numerical results related to the compression,
and have no physical meaning in the sense of material overlap or penetration. The addition of a remote
loading generating K 0

I �z� will increase the total stress intensity factor, KI�z, v1, x1��K 0
I �z��K 1

I �z, v1,x1�,
as stated previously. If in so doing, KI(z, v1, x1) > 0, then the negative residual stress generated SIF
K 1

I �z, v1, x1� has a physical meaning of the shielding (or unloading) e�ect. For example, at the spacing
r/a < ÿ1, the crack-inclusion interaction results in shielding: KI�z, v1, x1� < K 0

I �z�: The impact of the
inclusion on the crack is highly localized in the region |r| < 2a and rapidly becomes negligible at the

Fig. 1. Normalized modes I SIF K 1
I �z,v1,x1�=W as a function of inclusion localization r for di�erent crack sizes R c=1000a (solid

curve), R c=10a (dotted curve), and R c=3a (dot±dashed curve).
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further points. This indicates that, in the case of a crack interacting with many inclusions, we can expect
a short-range interaction e�ect. This seems to imply that the size of the so-called representative volume
element (RVE) will be small enough.

In order to illustrate the method and to examine the in¯uence of the spatial arrangement of the
inclusions, we come now to the evaluation of conditional averages hK1(z)|vJ, xJi (J= 0,1) Eq. (28). For
the ®xed inclusion, the normalized curves hK 1

I �z�jv1, x1i=W are calculated in Fig. 2. by the use of the step
radial distribution function Eq. (87) and the real one Eq. (88) for c= 0.4. For the matrix located in the
point x0=(0, R c+r, 0), the relevant curve is calculated under the step correlation function,

f�vp, xpj;v0, x0� � H�jxp ÿ x0j ÿ a�n�1�: �89�
Notwithstanding the fact that the conditional average stresses inside each component in the absence

of a crack hssaci1 Eq. (29) and hssaci0 Eq. (30) do not depend on the radial distribution function g, it is
evident from Fig. 2 that the signi®cant in¯uence of neighboring order in localization of the inclusions on
the values of hK 1

I �z�jvJ, xJi=W (J = 0, 1). Such strong in¯uence of g on the conditional average SIF is
explained by the essentially nonlinear dependence of SIF on the local stresses near the crack tip.
Moreover, the perturbation generated by surrounding inclusions hK(z)|vi, xiiÿK(z, vi, xi ) is a linear
function of the inclusion concentration for the step radial function Eq. (87). Therefore, the normalized
curve, �hK 1

I �z�jvi, xii ÿ K 1
I �z, vi, xi ��=Wc, is a weak function of n and varies by 1%, at most, for the range

of values 0.2 R n R 0.4. In this connection, it should be mentioned that the analogous two-dimensional
model representation of a two-component material containing randomly ¯uctuating residual stresses was
analyzed by Lipetzky and Kreher (1994) by the use of the Monte Carlo simulations of the
microstructure with a wide distribution of inclusion sizes. For c = 0.3 and a single case of the ®xed
inclusion v1 with center x1=(0, R c+a, 0), they evaluated hK 1

II�z�jv1, x1i � 0 and hK 1
I �z�jv1,

x1i � ÿ0:5 MPa mÿ2, in conformity with Fig. 2: hK 1
I �z�jv1, x1i � ÿ0:7 MPa mÿ2:

The curves plotted in Fig. 2 depend on g and n, and are invariant with respect to both another
thermo-elastic properties of components and the size of inclusions as well. From Fig. 2, we see that the
conditional average, hKI(z)|v0, x0i, under the condition of the location in the matrix at the point x0=(0,
R c+r, 0) is less with respect to the magnitude than the average hKI(z)|v1, x1i with ®xed inclusion in the

Fig. 2. Conditional normalized averages hK 1
I �z�jv1,x1i=W (solid and dotted curves) and hK 1

I �z�jv0,x0i=W (dot±dashed curve) calcu-

lated for either the real correlation function Eq. (88) (dotted curve) and the step function Eq. (87) (solid and dot±dashed curve).
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point x1=(0, R c+r, 0). It turns out that the relative placement of the curves for the SIF ¯uctuations
DK2(z|vk, xk)0hK2(z)|vk, xkiÿhK(z)|vk, xki2 (k=0,1) is interchanged.

For zero remote loading (ss000) in Figs. 3 and 4, the normalized curves �DK 2
i �zjvk, xk��1=2=W0r=a (i

= I, II; k = 0,1) are plotted for the step radial function Eq. (87) and the real one Eq. (88) (the similar
results take place for i = III, k = 0, 1). Analogous results for the matrix located in the point x0=(0,
R c+r, 0) represent for the case of a step correlation function Eq. (89) only. We see that the ¯uctuation
of the mode II SIF (and the mode III SIF as well) are not equal to zero, although there is a symmetry
of the problem being analyzed and, therefore, hK 1

II�zjvk, xk�i � hK 1
III�zjvk, xk�i � 0 at ss=0. It is clear

that the reason why the conditional ¯uctuations of the SIF under matrix cracks are materially greater
than ¯uctuations of the SIF with the ®xed inclusion. Really, these values de®ned by the action of
surrounding inclusions vp ( p = 2, 3,...), but the distances from the center xp of the nearest inclusion vp

Fig. 3. Normalized SIF ¯uctuation of mode I �DK 1
I �zjvk,xk��1=2=W as a function of either an inclusion location (solid and dotted

curves, k=1) and the matrix location (dot±dashed curve, k=0) calculated for either the real correlation function Eq. (88) (dotted

curve) and the step function (Eqs. (87) and (89)) (solid and dot±dashed curve, respectively).

Fig. 4. Normalized SIF ¯uctuation of mode II �DK 1
II�zjvk,xk��1=2=W (the notation of Fig. 3).
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( p = 2, 3,...) to the ®xed point xJ (J = 0, 1) are di�er among themselves: |xpÿx1|=2|xpÿx0|. The
minimum of DK 2

i �zjvJ, xJ� (i= I, II, III; J=0, 1) occurs for the location of the ®xed point near a crack
tip z. For the remote ®eld points, K2(z|vJ, xJ) 4 const.$0 under |xJÿz| 41 (J = 0, 1). For the step
radial functions Eq. (57) DK2(z|vJ, xJ)/c does not depend on the inclusion concentration. Recall that
because the crack size is constant and at the estimation of hK1(z)|vJ, xJi, the in¯uence of the remote
loading equals zero, the randomness of the stress intensity factor is not a result of any intervention by
an external e�ect, but rather a direct result of the many possible residual stress states. As a consequence,
the ¯uctuations of SIFs DK2(z)$0, in spite of the exact results hK(z)i0K0(z), as well as hK(z)i00 at
ss000.
Let us consider the crack tip inside a ®nite random cloud of inclusions. For the sake of de®niteness,

the cloud being analyzed has a form of a ball with center x®n=(0, R c+r ®n, 0) and radius a ®n; inclusion
concentration equals a constant in the cloud f(vi, xi)=c, xi $ v ®n. Then hK(z)i may be estimated by the
use of Fig. 1, by replacing a, x1 and bb10 by a ®n, x®n and cbb10, respectively. It is easy to perceive that, for
a su�ciently large cloud, in general |hK(z)i|>>|hK(z)|v1, x1iinf| 8xi and the SIF ¯uctuations are negligibly
small quantities compared with hK(z)i. But from Fig. 1, we notice that there is a point r ®n 3 0.93a ®n,
for which hK(z)i=0 and the conditional averages and the ¯uctuations formally coincide with the
analogous values found for the in®nite random ®eld of the inclusions, see Eqs. (54) and (55).

It should be mentioned that Figs. 1±4 were plotted in the dimensionless form by the use of the
normalized coe�cient W. The curves obtained above depend only on Poisson's ratio n and are invariants
with respect to both the other thermoelastic properties of the components and the inclusion size. But for
the range of values 0.2 R n R 0.4, the calculated curves for both the conditional averages and
¯uctuations of SIF vary 0.5% at most for mode I and 4% for modes II and III. For 0.05 R n R 0.49,
the normalized values may di�er by 10%. In so doing, the stress ¯uctuation �Dsss2

k�x��1=2=W (k=0, 1) can
vary even more drastically (see Buryachenko, 1999b). It seems di�cult to justify such small variations of
the normalized conditional averages of SIF and SIF ¯uctuations inside the practically important range
0.2 R n R 0.4. But it is because of this fact that such ®gures may be used for analysis of the wide class
of elastically homogeneous composites with the microtopology of transformed inclusions studied here.

10.2. E�ective energy release rate

For representation of the numerical estimations of hJ(z)|vJ, xJi and DJ(z|vJ, xJ ) (J=0, i; i=1, 2,...)
in dimensionless form, we de®ne the normalized coe�cient y 0 (1ÿn )W 2/(2m ) and a dimensionless
parameter x=2g/y, where n is a Poisson's ratio. According to Eqs. (23) and (67), the coe�cient y is
proportional to the energy release rate for a single penny-shaped microcrack with radius R c=a within
an isolated spherical inclusion in the in®nite homogeneous matrix. For example, in line with Section
10.1 the composite material Si3N4±SiC with SiC spherical inclusions may be considered as an elastically
homogeneous material with the parameters k=236.4 GPa, m=121.9 GPa, b10=ÿ10ÿ3, a=10ÿ5 m, g(x)
0g=7� 10ÿ2 MPa m; therefore, in this concrete case y=2.47� 10ÿ6 MPa m, x=5.67� 104.

Below, the numerical estimations for di�erent average energy release rates will be obtained in the
form of normalized curves by the use of coe�cient y. These curves are de®ned only by microtopology of
the material and have a weak dependence on n. We will represent the calculation only for n=0.28
(composite Si3N4±SiC) and will estimate the boundaries of its variation under the change of n. Similarly,
the fracture probability of composite will be represented as a function of x, depending on the material
microtopology and Poisson's ratio. For simplicity's sake, only the binary interaction of the inclusions
will be taken into account.

At ®rst, we analyze J(hK(z)|vk, xki) (k= 1, 0; ss000) Eq. (69) as a function of the location of either
the inclusion (k= 1) or the matrix (k= 0) at the point xk=(0, R c+r, 0). As a consequence of problem
symmetry, hK 1

II�z�jvk, xki � hK 1
III�z�jvk, xki � 0 8xk=(0, R c+r, 0) (k = 0, 1) and, therefore, J(hK(z)|vk,
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xki) 0 J(hKI(z)|vk, xki) is de®ned only by mode I SIF. Then, for example, at r/a < ÿ1, we have
hK 1

I(z)|v1x1i< 0 (see Fig. 2) and the location of the inclusion leads to the reduction of J(hK(z)|v1, x1i)
(shielding e�ect). The curves calculated for n=0.28 vary in value no greater than 1%, according to the
changes in n through a range 0.05R n R 0.49.

We are coming now to the estimation of the ¯uctuation part of the conditional average energy release
rate DJ(z|vJ, xJ ) (J= 0, i; i= 1, 2,...) Eq. (76). In Fig. 5, the curve DJ(z|v0, x0)/y is calculated for the
location of the matrix in the point x0 under the step correlation function Eq. (89) and c = 0.4. In the
case of the ®xed inclusion, the relevant curves are obtained for the distribution function (Eqs. (88) and
(87)), respectively. From Fig. 5, we notice that the ¯uctuating component of DJ(z|vk, xk)/y for the
localized matrix (k = 0) in excess of the ®xed inclusion (k = 1). For the case of binary interaction of
inclusions DJ(z|vk, xk)/y (k = 0, 1) is a linear function of the inclusion concentration c if the step
correlation functions (Eqs. (87) and (89)) are used.

It is of interest to estimate the comparative contribution of the normal DJno(z|vk, xk) and shear
DJsh(z|vk, x) stress ¯uctuation to DJ(z|vk, xk )0DJno(z|vk, xk )+DJsh(z|vk, xk ). From Fig. 6, it is seen
that the normal component DJno(z|vk, xk )/y is congruent with the shear component DJsh(z|vk, xk )/y,
for the case of the step radial functions, Eq. (87) (k=1) and Eq. (89) (k=0). Moreover, DJsh(z|vk, xk )
> DJno(z|vk, xk ) over the regions ÿ1 < r/a< 1 (k= 1) and r= 0 (k= 0), which arouses considerable
interest in actual practice. The curves plotted for n=0.28 vary in value no greater than 0.5% for the
normal components and 4% for the shear components, according to changes in n through a range 0.2 R
n R 0.4; the curves calculated exchange places within 0.05 R n R 0.49 by, at most, 1% and 10%,
respectively.

Now let us consider a microcrack near and inside a ®xed inclusion for the step correlation function
Eq. (87) and c = 0.4. We assume that crack tip z is inside the the matrix if z lies outside the ®xed
inclusion v1. We analyze the location of the the inclusion v1 with center x1=(0, R cÿa+r, 0)~ near the
microcrack S_n=(1, 0, 0)~ with center R c R a and center xc=(0, 0, 0)~; other arrangements of the
inclusion v1 near the microcrack can be considered in a similar manner. The value r= 0 corresponds to
the case when the crack tip z belongs to the inclusion boundary. The curves hJ(z|v1, x1)i/y and
J(hK(z)|v1, x1i)/y are plotted in Fig. 7 for di�erent sizes of microcracks R c=a and R c=0.53a. It can be
seen that the values of hJ(z|v1, x1i vary slightly inside the region 0< r<2a until the crack tip intersects

Fig. 5. Fluctuation part of the conditional average of the energy release rate DJ(z|vk, xk )/y under ®xed matrix (dotted line, k=0)

and ®xed inclusion for real distribution function Eq. (88) (solid line, k=1) and step one Eq. (87) (dot±dashed line, k=1).
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the inclusion boundary; thereafter, hJ(z|v1, x1i (determined primarily by the mode I SIF) will decrease
rapidly. In the example considered, we obtain hKI(z)|v1, x1i < 0 within the regions r < ÿ0.06a
(R c=0.53a ) and r < ÿ0.11a (R c=a ). Therefore, the values of the energy release rate have no physical
meaning inside the regions indicated. As one may have expected, smaller values of hJ(z|v1, x1i
correspond to smaller microcracks R c=0.53a (scale e�ect).

We turn our attention to the prediction of fracture probability of separate components near
macrocrack S_n=(1, 0, 0)~ with radius R c=100a and center xc=(0, 0, 0) under c = 0.4 and the step
radial function Eq. (87). In view of the large expenditure of computational time for the case of a ®xed
inclusion, we will consider only the point x1=(0, R cÿ0.7a, 0)~ with maximum conditional SIF
hK 1

I �z�jv1, x1i � max, taking into account that SIF ¯uctuation is a weak function of x1 under |x1| < a.
We assume a Gaussian distribution of SIF with conditional average hK(z)|vk, xki (k=0, 1) Eq. (27) and

Fig. 6. Normal DJno(z|vk, xk)/y (solid and dotted lines) and shear DJsh(z|vk, x)/y (dashed and dot±dashed lines) components of

energy release rate DJ(z|v1, x1)/y for ®xed matrix (dotted and dashed lines) and inclusions (solid and dot±dashed lines).

Fig. 7. Total hJ(z)|v1, x1i/y (solid and dotted curves) and a mean part J(hK1(z)|v1, x1i)/y (dashed and dot±dashed curves) of the

energy release rate as a function of the inclusion location r/a for: R c=a (solid and dashed curves) and R c=0.53a (dot and dot±

dashed curves, respectively).
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the covariance matrix Eq. (80), which has diagonal form for our case being analyzed. The integration
domain in Eq. (79) (the region of safe loading) constitutes the union of an ellipsoidal domain and a
half-space Eq. (82). Fig. 8 shows the plots of fracture probability f (k )(z|vk, x) (Eqs. (79) and (82)) (for k
= 1 and for k = 0) as a function of the dimensionless number x for c = 0.4 and step conditional
probability densities (Eqs. (87) and (89)). At ®rst glance, it would seem strange that for a su�ciently
strong material, x > 1.36 the fracture probability of the matrix is more than the fracture probability of
the inclusion, notwithstanding the fact that hKI(z)|v1, x1i> 0> hKI(z)|v0, x0i. Such a result stands clear
when one takes into account the greater level of the SIF ¯uctuation inside the matrix (see Fig. 2).
Therefore, the fracture probability will be fundamentally determined by the maximum SIF ¯uctuations
(other than the conditional average SIF) over the region x>>1, which arouses considerable interest in
actual practice. For zero strength of the materials, f (k )(z|vk, xk) 4 1ÿP{KI(z|vk, xk ) < 0} and f (1)(z|v1,
x1)4 0.97, f (0)(z|v0, x0)4 0.28, which correlates well with our simplifying assumption that the material
will not fail under compression.

It is interesting to compare the numerical results just obtained by the use of a probabilistic model
with a deterministic model of fracture Eq. (66) near the macrocrack tip (R c=100a ) hJ(z)|vk, xki=2g,
when the unit probability of the fracture occurs at x R 0.25 (k= 1) and x R 0.50 (k= 0). With the use
of the conditional average SIF Eq. (70), one should expect fracture of the inclusion at x R 0.12, while
fracture of the matrix is impossible. We see that the estimation of fracture probability may be de®ned
more exactly by the application of a more correct model Eq. (68).

It should be noted that all these values of x are signi®cantly below the quantity x=5.67 � 104 for the
Si3N4±SiC composite; therefore, internal thermal stresses alone can not break down this speci®c
composite. In the case of additional action of external loading, the stress ¯uctuation can involve
decreasing the level of fracture loading (see, as an example, Lipetzky and Kreher, 1994), but the
consideration of this problem is beyond the scope of the present article.

11. Conclusion

The proposed analytical±numerical method is e�cient from a computational standpoint and provides
a high-accuracy estimation of the energy release rate of a penny-shaped crack in the random ®eld of an

Fig. 8. Fracture probability P0f (k )(z, vk, xk) (k=0, 1) as a function of dimensionless number x for located inclusions in the point

of maximum conditional average SIF (solid line) and for ®xed matrix (dashed line).
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ellipsoidal inclusions with stress-free strains. We show the fundamental role of residual stress
¯uctuations in the fracture mechanics of composite materials. However, it should be mentioned than
actual crack growth is more complicated than simply ®nding an extreme ¯uctuation along the crack
front, and spatial correlations of stress ®elds along the crack perimeter come into play here.
Furthermore, the numerical results are presented for statistically homogeneous media and the case of
graded materials (as well as a boundary value problem), when the concentration of inclusions depends
on the coordinates, is not considered. These e�ects can be estimated by the method proposed and will
be pursued in forthcoming papers by the author.
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Appendix A. Integral representations for SIF

The magnitudes of the the modes I, II and III SIFs Kj ( j=1, 2, 3) at the given point z=(0, R c cos j,
R c sin j )~ along the front of a crack of radius R c due to an arbitrary distribution of the normal
traction p(r0, j0) and the shear one t(r0, j0) (arbitrary inclined to the y- and z-axes: t=tx+ity ) are
given by the formulae (Fabrikant, 1989)

K1�z� � 1

p
��������
pRc
p

�2p
0

�Rc

0

������������������
Rc2ÿ r20

q
p�r0, j0�r0

Rc2� r20 ÿ 2Rc cos�jÿ j0�
dr0 dj0

K2�z� � iK3�z� � 1

p
��������
pRc
p

�2p
0

�Rc

0

������������������
Rc2ÿ r20

q (
eÿijt�r0, j0�

Rc2� r20 ÿ 2Rc cos�jÿ j0�

� n
2ÿ n

eijf3Rc ÿ r0e
i�jÿj0�g�t�r0, j0�

RcfRc ÿ r0ei�jÿj0�g2
)
r0 dr0 dj0, �A1�

where an overbar denotes a complex conjugate.
According to Gao (1988) and Kachanov and Laures (1989), we change from polar coordinate (r0, j0)

in the crack plane to the new coordinate (v, z )

v �
�
1� 1

d

������������������
Rc2 ÿ r20

q �ÿ1
, z � sinÿ1

�
r0
d

sin�j0 ÿ j�
�
, �A2�

where d 2�Rc2�r20ÿ2Rcr0 cos�j0ÿj� is the square of the distance between the point (r0, j0) and the
point (R c, j ) along the crack front. Then Eq. (A1) is converted to the integral form:

K1�z� � 4
��������
pRc
p

p2

�p=2
ÿp=2

�1
0

p�v, z� �1ÿ v�2 cos z

��1ÿ v�2 � v2�2 dv dz,
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K2�z� � iK3�z� � 4
��������
pRc
p

p2

�p=2
ÿp=2

�1
0

�1ÿ v�2 cos z

��1ÿ v�2 � v2�2 �
(
teÿij � 2n

�2ÿ n� �tei�jÿz�

�
"

eÿiz � v2 cos z

�1ÿ v�2 � v2

#)
dv dz,

�A3�

which are non-singulars. Here, we correct some misprints made in the papers by Kachanov and Laures
(1989) and by Kachanov (1993) in Eqs. (A2) and (A3).
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